Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Host Microbe ; 31(6): 874-889, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: covidwho-20244606

RESUMO

Recombination is thought to be a mechanism that facilitates cross-species transmission in coronaviruses, thus acting as a driver of coronavirus spillover and emergence. Despite its significance, the mechanism of recombination is poorly understood, limiting our potential to estimate the risk of novel recombinant coronaviruses emerging in the future. As a tool for understanding recombination, here, we outline a framework of the recombination pathway for coronaviruses. We review existing literature on coronavirus recombination, including comparisons of naturally observed recombinant genomes as well as in vitro experiments, and place the findings into the recombination pathway framework. We highlight gaps in our understanding of coronavirus recombination illustrated by the framework and outline how further experimental research is critical for disentangling the molecular mechanism of recombination from external environmental pressures. Finally, we describe how an increased understanding of the mechanism of recombination can inform pandemic predictive intelligence, with a retrospective emphasis on SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Estudos Retrospectivos , Filogenia , Recombinação Genética
2.
Ecohealth ; 19(2): 216-232, 2022 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1906146

RESUMO

Bats are important hosts of zoonotic viruses with pandemic potential, including filoviruses, MERS-Coronavirus (CoV), SARS-CoV -1, and likely SARS-CoV-2. Viral infection and transmission among wildlife are dependent on a combination of factors that include host ecology and immunology, life history traits, roosting habitats, biogeography, and external stressors. Between 2016 and 2018, four species of insectivorous bats from a readily accessed roadside cave and buildings in Ethiopia were sampled and tested for viruses using consensus PCR assays for five viral families/genera. Previously identified and novel coronaviruses and paramyxoviruses were identified in 99 of the 589 sampled bats. Bats sampled from the cave site were more likely to test positive for a CoV than bats sampled from buildings; viral shedding was more common in the wet season; and rectal swabs were the most common sample type to test positive. A previously undescribed alphacoronavirus was detected in two bat species from different taxonomic families, sampling interfaces, geographic locations, and years. These findings expand knowledge of the range and diversity of coronaviruses and paramyxoviruses in insectivorous bats in Ethiopia and reinforce that an improved understanding of viral diversity and species-specific shedding dynamics is important for designing informed zoonotic disease surveillance and spillover risk reduction efforts.


Assuntos
COVID-19 , Quirópteros , Vírus , Animais , COVID-19/epidemiologia , Etiópia/epidemiologia , Genoma Viral , Humanos , Filogenia , SARS-CoV-2
3.
Cell ; 184(19): 4848-4856, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: covidwho-1363914

RESUMO

Since the first reports of a novel severe acute respiratory syndrome (SARS)-like coronavirus in December 2019 in Wuhan, China, there has been intense interest in understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the human population. Recent debate has coalesced around two competing ideas: a "laboratory escape" scenario and zoonotic emergence. Here, we critically review the current scientific evidence that may help clarify the origin of SARS-CoV-2.


Assuntos
SARS-CoV-2/fisiologia , Animais , Evolução Biológica , COVID-19/virologia , Humanos , Laboratórios , SARS-CoV-2/genética , Zoonoses/virologia
4.
Viruses ; 13(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1162341

RESUMO

Coronavirus (CoV) spillover events from wildlife reservoirs can result in mild to severe human respiratory illness. These spillover events underlie the importance of detecting known and novel CoVs circulating in reservoir host species and determining CoV prevalence and distribution, allowing improved prediction of spillover events or where a human-reservoir interface should be closely monitored. To increase the likelihood of detecting all circulating genera and strains, we have modified primers published by Watanabe et al. in 2010 to generate a semi-nested pan-CoV PCR assay. Representatives from the four coronavirus genera (α-CoVs, ß-CoVs, γ-CoVs and δ-CoVs) were tested and all of the in-house CoVs were detected using this assay. After comparing both assays, we found that the updated assay reliably detected viruses in all genera of CoVs with high sensitivity, whereas the sensitivity of the original assay was lower. Our updated PCR assay is an important tool to detect, monitor and track CoVs to enhance viral surveillance in reservoir hosts.


Assuntos
Coronavirus/classificação , Coronavirus/genética , Coronavirus/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Animais , Animais Selvagens , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Genoma Viral , Especificidade de Hospedeiro , Humanos , Limite de Detecção , Pandemias , Filogenia , RNA Viral
5.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: covidwho-2167

RESUMO

Traditionally, the emergence of coronaviruses (CoVs) has been attributed to a gain in receptor binding in a new host. Our previous work with severe acute respiratory syndrome (SARS)-like viruses argued that bats already harbor CoVs with the ability to infect humans without adaptation. These results suggested that additional barriers limit the emergence of zoonotic CoV. In this work, we describe overcoming host restriction of two Middle East respiratory syndrome (MERS)-like bat CoVs using exogenous protease treatment. We found that the spike protein of PDF2180-CoV, a MERS-like virus found in a Ugandan bat, could mediate infection of Vero and human cells in the presence of exogenous trypsin. We subsequently show that the bat virus spike can mediate the infection of human gut cells but is unable to infect human lung cells. Using receptor-blocking antibodies, we show that infection with the PDF2180 spike does not require MERS-CoV receptor DPP4 and antibodies developed against the MERS spike receptor-binding domain and S2 portion are ineffective in neutralizing the PDF2180 chimera. Finally, we found that the addition of exogenous trypsin also rescues HKU5-CoV, a second bat group 2c CoV. Together, these results indicate that proteolytic cleavage of the spike, not receptor binding, is the primary infection barrier for these two group 2c CoVs. Coupled with receptor binding, proteolytic activation offers a new parameter to evaluate the emergence potential of bat CoVs and offers a means to recover previously unrecoverable zoonotic CoV strains.IMPORTANCE Overall, our studies demonstrate that proteolytic cleavage is the primary barrier to infection for a subset of zoonotic coronaviruses. Moving forward, the results argue that both receptor binding and proteolytic cleavage of the spike are critical factors that must be considered for evaluating the emergence potential and risk posed by zoonotic coronaviruses. In addition, the findings also offer a novel means to recover previously uncultivable zoonotic coronavirus strains and argue that other tissues, including the digestive tract, could be a site for future coronavirus emergence events in humans.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/química , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Receptores Virais/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Células CACO-2 , Quirópteros , Chlorocebus aethiops , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Humanos , Tripsina , Células Vero , Zoonoses/metabolismo , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA